GENETIC DIVERSITY OF THE SIKA DEER CERVUS NIPPON IN LITHUANIA

Pūraitė Irma, Algimantas Paulauskas

Abstract


The sika deer (Cervus nippon) are considered to be an invasive species in Europe. The main problem that the European free-living sika deer pose is damage they do to forests as well as hybridisation with the local red deer. The aim of this study was to analyse the genetic diversity of the sika deer and the red deer in Lithuania, and to determine the hybridization, which might be present in red deer population from the past release of sika deer into the nature.

Tissue samples were collected from 30 sika deer individuals from enclosures, and 33 wild-living red deer. Samples were genotyped using seven microsatellite (STR) loci; genetic diversity indices were calculated and individuals were classified using Principal Coordinate Analysis (PCoA); the genetic structure of sika deer and red deer was investigated according to Bayesian clustering method using STRUCTURE software.

The STR loci were highly polymorphic with up to 17 alleles per locus, and with an average heterozygosity Ho=0.695 and Ho=0.626 for sika deer and red deer respectively. Overall inbreeding coefficient (FIS) values are 0.004 and 0.127 in sika and red deer respectively. According to the PCoA sika deer samples differ from those of red deer; however, few red deer individuals mix with sika deer. These animals were attributed to red deer according to their phenotype; however according to their genotype they are closer to sika deer.

Thus, it can be concluded that wild red deer in Lithuania may hybridise with sika deer. 


Keywords


Cervus elaphus, Cervus nippon, genetic diversity, microsatellites, the red deer, the sika deer

Full Text:

PDF

References


Balčiauskas, L., Trakimas, G., Juškaitis, R., Ulevičius, A., Balčiauskienė, L. (1999). Atlas of Lithuanian mammals, amphibians and reptiles. Akstis (in Lithuanian).

Baleišis, R., Bluzma, P., Balčiauskas, L. (2003). Hoofed animals of Lithuania. Akstis (in Lithuanian).

Bartoš, L. (2009). Sika deer in Continental Europe. In: McCullough D.R., Takatsuki S. and Kaji K. (eds.). Sika Deer: Biology, Conservation and Management of Native and Introduced Populations, Tokyo: Springer, p. 573–594.

Bartoš, L. Hyánek, J. Žirovnický, J. (1981). Hybridisation between red and sika deer 1. Craniological analysis. Zoologischer Anzeiger, 207: 260–270.

Bishop, M.D., Kappes, S.M., Keele, J.W., Stone, R.T., Sunden, S.L.F., Hawkins, G.A., Solonas-Toldo, S., Fries, R., Grosz, M.D., Yoo, J., Beattie, C.W. (1994). A genetic linkage map of cattle. Genetics 136: 619–639.

Bonnet A., Thevenon S., Maudet F., Maillard J.C. (2002). Efficiency of semi-automated fluorescent multiplex PCRs with 11 microsatellite markers for genetic studies of deer populations. Animal Genetics 33: 343–350.

DAISIE (2009). Handbook of Alien Species in Europe. Invading Nature: Springer Series in Invasion Ecology. Springer-Verlag. Dordrecht, Netherlands. Vol. 3.

Davidson, M. (1973). Characteristics, liberation and dispersal of sika deer (Cervus nippon) in New Zealand. New Zealand Journal of Forestry Science 3: 153–180.

Diaz, A., Hughes, S., Putman, R., Mogg, R., Bond, J.M. (2006). A genetic study of sika (Cervus nippon) in the New Forest and in the Purbeck region, southern England: is there evidence of recent or past hybridization with red deer (Cervus elaphus)? Journal of Zoology 270: 227–235.

Earl, D. A., von Holdt, B. M. (2012). Structure Harvester: a website and program for visualizing structure output and implementing the Evanno method. Conservation Genetics Resources vol. 4 (2): 359-361.

Falush, D., Stephens, M., Pritchard, J. K. (2003). Inference of population structure using multilocus genotipe data: linked loci and correlated allele frequencies. Genetics 164: 1567–1587.

Frantz, A.C., Hamann, J.L., Klein, F. (2008). Fine-scale genetic structure of red deer (Cervus elaphus) in a French temperate forest. European Journal of Wildlife Research 54(1): 44-52.

Goodman, S.J., Barton, N.H., Swanson, G., Abernethy, K., Pemberton, J.M (1999). Introgression through rare hybridization: A genetic study of a hybrid zone between red and sika deer (Genus Cervus) in Argyll, Scotland. Genetics 152: 355–371.

Goodman, S.J., Tamate, H.B., Wilson, R., Nagata, J., Tatsuzawa, S., Swanson, G.M., Pemberton, J.M., McCullough, D.R. (2001). Bottlenecks, drift and differentiation: the population structure and demographic history of sika deer (Cervus nippon) in the Japanese archipelago. Molecular Ecology 10: 1357–1370.

Goudet, J. (1995). FSTAT (Version 1.2): A computer program to calculate F-statistics. Journal of Heredity 86 (6): 485–486.

Haanes, H., Røed, K.H., Perez-Espona, S., Rosef, O. (2011). Low genetic variation support bottlenecks in Scandinavian red deer. European Journal of Wildlife Research 57: 1137–1150.

Harrington, R. (1973). Hybridization among deer and its implications for conservation. Irish Forestry Journal 30: 64–78.

Harrington, R. (1979). Some Aspects of the Biology and Taxonomy of the Deer of the County Wicklow Region, Ireland. National University of Ireland. PhD Thesis.

Harrington, R. (1982). The hybridization of red deer (Cervus elaphus L. 1758) and Japanese sika deer (C. nippon Temminck, 1838). In: International Congress of Game Biologists 14: 559–571.

He, Y., Wang, Z.-H., Wang, X.-M. (2014). Genetic diversity and population structure of a Sichuan sika deer (Cervus sichuanicus) population in Tiebu Nature Reserve based on microsatellite variation. Zoological Research 35(6): 528–536.

Hubisz, M. J., Falush, D., Stephens, M., Pritchard, J. (2009). Inferring weak population structure with the assistance of sample group informatikon. Molecular Ecology Resources 9: 1322–1332.

Kuehn, R., Schroeder, W., Pirchner, F., Rottmann, O. (2003). Genetic diversity, gene flow and drift in Bavarian red deer populations (Cervus elaphus). Conservation Genetics 4(2): 157-166.

Lowe, V.P.W., Gardiner, A.S., 1975. Hybridization between Red Deer and Sika Deer, with reference to stocks in north-west England. Journal of Zoology (London) 177: 553–566.

Mattioli, S. (Family Cervidae (Deer) chapter) (2011). In Wilson D.E. and Mittermeier R.A. ed., Handbook of the mammals of the world. Hoofed mammals. Lynx Edicions, Barcelona. Vol.2.

McDevitt, A.D., Edwards, C.J, O’Toole, P., O’Sullivan, P., O’Reilly, C., Carden, R.F. (2009). Genetic structure of, and hybridization between red (Cervus elaphus) and sika (Cervus nippon) deer in Ireland. Mammalian Biology 74: 263–273.

Nabata, D., Masuda, R., Takahashi, O. (2004). Bottleneck effects on the sika deer Cervus nippon population in Hokkaido, revealed by ancient DNA analysis. Zoological Science 21: 473–481.

Nagata, J., Masuda, R., Kaji, K., Ochiai, K., Asada, M., Yoshida, M.C. (1998). Microsatellite DNA variations of the sika deer, Cervus nippon, in Hokkaido and Chiba. Mammal Study 23: 95–101.

Nentwig, W., Kuhnel, E., Bacher, S. (2010). A generic impact scoring system applied to alien mammals in Europe. Conservation Biology 24: 302–311.

Okada, A., Tamate, H.B. (2000). Pedigree analysis of the sika deer (Cervus nippon) using microsatellite markers. Zoological Science 17(3): 335–340.

Ou, W., Takekawa, S., Yamada, T., Terada, C., Uno, H., Nagata, J., Masuda, R., Kaji, K., Saitoh, T. (2014). Temporal change in the spatial genetic structure of a sika deer population with an expanding distribution range over a 15-year period. Population Ecology 56: 311–325.

Peakall, R., Smouse, P.E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28: 2537–2539.

Perez-Espona, S., Pemberton, J.M., Putman, R.J. (2009). Red and sika deer in the British Isles, current management issues and management policy. Mammalian Biology 74: 247–262.

Pitra, C., Lutz, W. (2005). Population genetic structure and the effect of founder events on the genetic variability of introduced sika deer, Cervus nippon, in Germany and Austria. European Journal of Wildlife Research 51: 95–100.

Pitra, C., Rehbein, S., Lutz, W. (2005). Tracing the genetic roots of the sika deer Cervus nippon naturalized in Germany and Austria. European Journal of Wildlife Research 51: 237–241.

Poetsch, M., Seefeldt, S., Maschke, M., Lignitz, E. (2001). Analysis of microsatellite polymorphism in red deer, roe deer, and fallow deer — possible employment in forensic applications. Forensic Science International 116: 1–8.

Radko, A., Zalewski, D., Rubiś, D., Szumiec, A. (2014). Genetic differentiation among 6 populations of red deer (Cervus elaphus L.) in Poland based on microsatellite DNA polymorphism. Acta Biologica Hungarica 65(4): 414-427.

Roed, K.H., Midthjell, L. (1998). Microsatellites in reindeer, Rangifer tarandus, and their use in other cervids. Molecular Ecology 7: 1771–1788.

Rousset, F. (2008). Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux. Molecular Ecology Resources 8: 103–106.

Senn, H.V., Pemberton, J.M. (2009). Variable extent of hybridization between invasive sika (Cervus nippon) and native red deer (C. elaphus) in a small geographical area. Molecular Ecology 18: 862–876.

Senn, H.V., Swanson, G.M., Goodman, S.J., Bartons, N.H., Pemberton, J.M. (2010). Phenotypic correlates of hybridisation between red and sika deer (genus Cervus). Journal of Animal Ecology 79: 414–425.

Sheng, H.L. (1992). Cervus nippon. The Deer in China, East China Normal University Press, Shanghai (in Chinese).

Shen-Jin, L.V., Yan, Y., Xue-Bin, W. (2014). Genetic diversity analysis by microsatellite markers in four captive populations of the sika deer (Cervus nippon). Biochemical Systematics and Ecology 57: 95–101.

Soriguer, B.S.R., Rico, C. (2008). Cross-species tests of 45 microsatellite loci isolated from different species of ungulates in the Iberian red deer (Cervus elaphus hispanicus) to generate a multiplex panel. Molecular Ecology Resources 8: 1378–1381.

Szabolcsi, Z., Egyed, B., Zenke, P., Padar, Z., Borsy, A., Steger, V., Pasztor, E., Csanyi, S., Buzas, Z., Orosz, L. (2014). Constructing STR Multiplexes for individual identification of Hungarian red deer. Journal of Forensic Sciences 59(4): 1090-1099.

Tamate, H.B., Okada, A., Minami, M., Ohnishi, N., Higuchi, H., Takatsuki, S. (2000). Genetic variations revealed by microsatellite markers in a small population of the sika deer (Cervus nippon) on Kinkazan Island, Northern Japan. Zoological Science 17: 47–53.

Tamate, H.B., Tatsuzawa, S., Suda, K., Izawa, M., Doi, T., Sunagawa, K., Miyahira, F., Tado, H. (1998). Mitochondrial DNA variations in local populations of the Japanese sika deer, Cervus nippon. Journal of Mammalogy 79(4): 1396–1403.

Thevenon, S., Bonnet, A., Claro, F., Maillard, J.C. (2003). Genetic diversity analysis of captive populations: The Vietnamese sika deer (Cervus nippon pseudaxis) in zoological parks. Zoo Biology 22: 465–475.

Thevenon, S., Thuy, L.T., Ly, L.V., Maudet, F., Bonnet, A., Jarne, P., Maillard, J.C. (2004). Microsatellite analysis of genetic diversity of the Vietnamese sika deer (Cervus nippon pseudaxis). Journal of Heredity 95:11–18.

van Oosterhout, C., Hutchinson, W.F., Wills, D.P.M., Shipley, P. (2004). MICROCHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Resources 4: 535–538.

Whitehead, G.K. (1964). The Deer of Great Britain on Ireland. Routledge and Kegan Paul, London.

Whitehead, G.K. (1993). The Whitehead Encyclopaedia of Deer. Swan Hill Press, Shrewsbury.

Wilson, G.A, Strobeck, C., Wu, L., Coffin, J.W. (1997). Characterization of microsatellite loci in caribou Rangifer tarandus, and their use in other artiodactyls. Molecular Ecology 6: 309-320.

Wu, H., Wan, Q.-H., Fang, S.-G. (2003). Two genetically distinct units of the Chinese sika deer (Cervus nippon): analyses of mitochondrial DNA variation. Biological Conservation 119: 183–190.

Wu, H., Wan, Q.-H., Fang, S.-G., Zhang, S.-Y. (2005). Application of mitochondrial DNA sequence analysis in the forensic identification of Chinese sika deer subspecies. Forensic Science International 148: 101–105.

Xiaoping, L., Fuwen, W., Ming, L., Guang, Y., Hai, L. (2006). Genetic diversity among Chinese sika deer (Cervus nippon) populations and relationships between Chinese and Japanese sika deer. Chinese Science Bulletin 51(4): 433–440.

Yuasa, T., Nagata, J., Hamasaki, S., Tsuruga, H., Furubayashi, K. (2005). The impact of habitat fragmentation on genetic structure of the Japanese sika deer (Cervus nippon) in southern Kantoh, revealed by mitochondrial D-loop sequences. Ecological Research 22: 97–106.

Zachos, F., Hajji, G.M., Hmwe, S.S., Hartl, G.B., Lorenzini, R., Mattioli, S. (2009) Population viability analysis and genetic diversity of the endangered red deer Cervus elaphus population from Mesola, Italy. Wildlife Biology 15(2): 175-186.

Zachos, F.E., Hartl, G.B. (2011). Phylogeography, population genetics and conservation of the European red deer Cervus elaphus. Mammal Review 41(2): 138–150.

Weir, B. S., Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution 38: 1358-1370.




DOI: http://dx.doi.org/10.15679/bjwr.v3i1.40

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

ISSN: 2335-0113

Publisher: Visio Mundi Academic Media Group

Creative Commons License
This journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.